Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.687
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 46-56, 2024.
Article in Chinese | WPRIM | ID: wpr-1006267

ABSTRACT

ObjectiveTo investigate the mechanism of Baihuan Xiaoyao Decoction (Xiaoyaosan added with Lilii Bulbus and Albiziae Cortex) in alleviating depression-like behaviors of juvenile rats by regulating the polarization of microglia. MethodSixty juvenile SD rats were randomized into normal control, model, fluoxetine, and low-, medium-, and high-dose (5.36, 10.71, 21.42 g·kg-1, respectively) Baihuan Xiaoyao decoction groups. The rat model of juvenile depression was established by chronic unpredictable mild stress (CUMS). The sucrose preference test (SPT) was carried out to examine the sucrose preference of rats. Forced swimming test (FST) was carried out to measure the immobility time of rats. The open field test (OFT) was conducted to measure the total distance, the central distance, the number of horizontal crossings, and the frequency of rearing. Morris water maze (MWM) was used to measure the escape latency and the number of crossing the platform. The immunofluorescence assay was employed to detect the expression of inducible nitric oxide synthase (iNOS, the polarization marker of M1 microglia) and CD206 (the polarization marker of M2 microglia). Real-time polymerase chain reaction was employed to determine the mRNA levels of iNOS, CD206, pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6] and anti-inflammatory cytokines (IL-4 and IL-10) in the hippocampus. Western blotting was employed to determine the protein levels of iNOS and CD206 in the hippocampus. The levels of IL-4 and IL-6 in the hippocampus were detected by enzyme-linked immunosorbent assay. ResultCompared with the normal control group, the model rats showed a reduction in sucrose preference (P<0.05), an increase in immobility time (P<0.05), decreased motor and exploratory behaviors (P<0.05), and weakened learning and spatial memory (P<0.05). In addition, the model rats showed up-regulated mRNA and protein levels of iNOS and mRNA levels of IL-1β, IL-6, and TNF-α (P<0.05). Compared with the model group, Baihuan Xiaoyao decoction increased the sucrose preference value (P<0.05), shortened the immobility time (P<0.01), increased the motor and exploratory behaviors (P<0.05), and improved the learning and spatial memory (P<0.01). Furthermore, the decoction down-regulated the positive expression and protein level of iNOS, lowered the levels of TNF-α, IL-1β, and IL-6 (P<0.01), promoted the positive expression of CD206, and elevated the levels of IL-4 and IL-10 (P<0.01) in the hippocampus of the high dose group. Moreover, the high-dose Baihuan Xiaoyao decoction group had higher sucrose preference value (P<0.01), shorter immobility time (P<0.01), longer central distance (P<0.01), stronger learning and spatial memory (P<0.01), higher positive expression and protein level of iNOS (P<0.01), lower levels of TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), lower positive expression and mRNA level of iNOS (P<0.05), and higher levels of IL-4 and IL-10 (P<0.05, P<0.01) than the fluoxetine group. ConclusionBaihuan Xiaoyao decoction can improve the depression-like behavior of juvenile rats by inhibiting the M1 polarization and promoting the M2 polarization of microglia in the hippocampus.

2.
Rev. argent. radiol ; 87(4): 149-154, dic. 2023. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1529632

ABSTRACT

Resumen Objetivo: En pacientes con enfermedad de Alzheimer (EA) se han descrito cambios neuropatológicos tempranos en la corteza entorrinal, que anteceden el compromiso temporomesial. La evaluación de la atrofia hipocampal mediante escalas visuales y volumetría son herramientas útiles en la valoración de pacientes con deterioro cognitivo. Nuestro objetivo es establecer la correlación entre la evaluación visual de la atrofia de la corteza entorrinal (ACE), la atrofia temporomesial (ATM) y el volumen hipocampal. Material y métodos: Estudio retrospectivo de corte transversal. Se incluyeron pacientes con queja cognitiva y resonancia magnética (RM) cerebral. Se utilizaron escalas visuales de ACE y ATM. Se midió el volumen hipocampal mediante el software volBrain 1.0. Resultados: Se incluyeron 48 pacientes, 31 eran mujeres (64,6%). Mediana de edad: 76,5 (RIQ: 69-83). La correlación entre las escalas visuales ACE y la ATM del lado derecho fue de 0,67 p < 0,0001) y del lado izquierdo de 0,69 (p < 0,0001). Encontramos correlación negativa moderada entre la ACE y el volumen hipocampal, del lado derecho fue de –0,59 (p < 0,0001) y del lado izquierdo de –0,42 (p = 0,003). Conclusión: La escala de ACE muestra moderada correlación con la escala de ATM y con el volumen hipocampal. Su uso podría aportar información valiosa para valoración de trastornos cognitivos.


Abstract Objective: In patients with Alzheimer’s disease (AD), early neuropathological changes in the entorhinal cortex have been described, which precede temporomesial involvement. The evaluation of hippocampal atrophy using visual scales and volumetry are useful tools in the assessment of patients with cognitive impairment. Our objective is to establish the correlation between the visual evaluations of entorhinal cortex atrophy (ECA), temporomesial atrophy (TMA), and hippocampal volume. Material and methods: Retrospective cross-sectional study. Patients with cognitive complaint and brain magnetic resonance imaging (MRI) were included. ACE and TMA visual scales were used. Hippocampal volume was measured using the volBrain 1.0 software. Results: Forty-eight patients were included, 31 were women (64.6%). Median age was 76.5 (IQR: 69-83). The correlation between ECA and TMA on the right side was 0.67 (p < 0.0001) and on the left side was 0.69 (p < 0.0001). We found a negative moderate correlation between ECA and hippocampal volume, on the right side it was –0.59 (p < 0.0001) and on the left side it was –0.42 (p = 0.003). Conclusion: The ECA scale shows high correlation with the TMA scale and moderate correlation with hippocampal volume. Its use could provide valuable information for the assessment of cognitive disorders.

3.
Acta neurol. colomb ; 39(3)sept. 2023.
Article in Spanish | LILACS | ID: biblio-1533501

ABSTRACT

Introducción: Con la experiencia de los registros electroencefalográficos invasivos y el fracaso quirúrgico después de la cirugía, se ha hecho evidente que la epilepsia del lóbulo temporal es mucho más compleja de lo que se creía, y en la actualidad es considerada una enfermedad de redes anatomofuncionales y no de lesiones estructurales. Contenido: La información neurofisiológica e imagenológica actual permite concluir que en esta epilepsia están involucradas varias redes neuronales temporales y extratemporales que contribuyen a la extensión de la zona epileptógena. Una forma de entender el concepto de red epiléptica en la epilepsia del lóbulo temporal es a partir del conocimiento de la corteza piriforme. Varios estudios clínicos han mostrado que en pacientes con epilepsia del lóbulo temporal asociada a esclerosis hipocampal existe una disfunción interictal del procesamiento olfatorio que es más significativa, en comparación con pacientes con epilepsia focal extrahipocampal y controles sanos. Esta alteración es, probablemente, la consecuencia de una red neuronal disfuncional que se extiende más allá del hipocampo y que afecta a otras estructuras cercanas, incluida la corteza piriforme. Conclusión: En este artículo llevamos a cabo una revisión narrativa de la literatura con el objetivo de establecer un vínculo entre la corteza piriforme y la epileptogénesis del lóbulo temporal, y demostramos que esta enfermedad es la consecuencia de una disfunción de redes neuronales que no depende exclusivamente de una anormalidad estructural en el hipocampo o en estructuras cercanas.


Introduction: With the experience of invasive EEG recordings and surgical failure after surgery, it has become clear that temporal lobe epilepsy is much more complex than previously thought, and currently, is conceptualized as a disease of anatomical networks instead of structural lesions. Content: The current neurophysiological and imaging information allows us to conclude that several temporal and extratemporal anatomical networks are involved in this type of epilepsy. One way of understanding the concept of the epileptic network in temporal lobe epilepsy is from the knowledge of the piriform cortex. Several clinical studies have shown that in patients with temporal lobe epilepsy associated with hippocampal sclerosis exists an interictal dysfunction of olfactory processing that is more significant compared to patients with focal extra-hippocampal epilepsy and healthy controls. This alteration is probably the consequence of a dysfunctional neural network that extends beyond the hippocampus and affects other nearby structures, including the piriform cortex. Conclusion: In this article, we carry out a narrative review of the literature with the aim of establishing a link between the piriform cortex and temporal lobe epileptogenesis, demonstrating that this disease is the consequence of a dysfunctional network that does not depend exclusively of a hippocampal structural abnormality.


Subject(s)
Smell , Temporal Lobe , Piriform Cortex , Hippocampus , Epilepsies, Partial
4.
Acta neurol. colomb ; 39(3)sept. 2023.
Article in Spanish | LILACS | ID: biblio-1533500

ABSTRACT

Introducción: En pacientes con epilepsia del lóbulo temporal refractarios que no son candidatos a cirugía, se debe considerar la estimulación eléctrica cerebral como una opción. Contenido: La estimulación eléctrica cerebral es la administración directa de pulsos eléctricos al tejido nervioso que permite modular un sustrato patológico, interrumpir la manifestación clínica de las crisis y reducir la gravedad de estas. Así, dada la importancia de estos tratamientos para los pacientes con epilepsia del lóbulo temporal refractaria, se hace una revisión de cuatro tipos de estimulación eléctrica. La primera, la del nervio vago, es una buena opción en crisis focales y crisis generalizadas o multifocales. La segunda, la del hipocampo, es más útil en pacientes no candidatos a lobectomía por riesgo de pérdida de memoria, con resonancia magnética normal o sin esclerosis mesial temporal. La tercera, la del núcleo anterior, es pertinente principalmente en pacientes con crisis focales, pero debe realizarse con precaución en pacientes con alto riesgo de cambios cognitivos, como los ancianos, o en los que presentan alteración del estado de ánimo basal, y, por último, la del núcleo centromediano se recomienda para el tratamiento crisis focales en el síndrome de Rasmussen y crisis tónico-clónicas en el síndrome de Lennox-Gastaut. Conclusiones: El interés por la estimulación eléctrica cerebral ha venido aumentando, al igual que las estructuras diana en las cuales se puede aplicar, debido a que es un tratamiento seguro y eficaz en pacientes con epilepsia del lóbulo temporal para controlar las crisis, pues disminuye la morbimortalidad y aumenta la calidad de vida.


Introduction: In patients with refractory temporal lobe epilepsy who are not candidates for surgery, electrical brain stimulation should be considered as another option. Contents: Electrical brain stimulation is the direct administration of electrical pulses to nerve tissue that modulates a pathological substrate, interrupts the clinical manifestation of seizures, and reduces their severity. Thus, given the importance of these treatments for patients with refractory temporal lobe epilepsy, four types of electrical stimulation are reviewed. The first, vagus nerve stimulation, is a good option in focal seizures and generalized or multifocal seizures. The second, hippocampal stimulation, is more useful in patients who are not candidates for lobectomy due to the risk of memory loss, with normal MRI or without mesial temporal sclerosis. The third, the anterior nucleus, is mainly in patients with focal seizures, but with caution in patients at high risk of cognitive changes such as the elderly, or in those with baseline mood disturbance and, finally, the centromedian nucleus is recommended for the treatment of focal seizures in Rasmussen's syndrome and tonic-clonic seizures in Lennox-Gastaut syndrome. Conclusions: the interest in brain electrical stimulation has been increasing as well as the target structures in which it can be applied because it is a safe and effective treatment in patients with temporal lobe epilepsy to control seizures, decreasing morbidity and mortality and increasing quality of life


Subject(s)
Anterior Thalamic Nuclei , Intralaminar Thalamic Nuclei , Epilepsy, Temporal Lobe , Vagus Nerve Stimulation , Electric Stimulation , Hippocampus
5.
Article | IMSEAR | ID: sea-225633

ABSTRACT

Background: Exposure to high levels of aluminium (Al) leads to neurotoxicity. Hippocampus is one of the preferred sites of aluminium accumulation. Nevertheless, the role of Al in Alzheimer’s disease (AD) remains controversial and there is little proof directly interlinking Al to AD. Aims: The present study was undertaken to find out the occurrence of AD pathogenesis in Hippocampus under moderate aluminium exposure in rats. Materials and Methods: Adult rats were divided into control (C) and aluminium treated (E) groups having eight animal each. The rats in group E were exposed to aluminium 4.2 mg/kg body weight for three months with due approval from Institute Animal Ethics Committee. The hippocampus was processed for histopathological and electron microscopy observation. Results: Moderate Al intake produces significant reduction in the count of Pyramidal cells in hippocampus identified by shrunken cells as well as pyknosis in cell bodies. The differences between the cell numbers in all groups were found to be statistically significant (P < 0.05). Cornu Ammonis (CA) exhibited significantly reduced nissl bodies with a marked reduction in neuronal cell loss. Neurofibrillary tangle and plaques were not seen in the given dose of Al exposure. Electron microscopy from experimental group showed that the majority of neurons were disintegrating, the nuclear membrane has ruptured, and nucleoli appeared significantly distorted. The chromatin condensed and the mitochondria had disintegrated. Many vacuoles and lipofuscin sediment in cytoplasm, as compared to the control group noted. Conclusion: Present data demonstrated that moderate chronic aluminium exposure 4.2mg/kg body weight induced neurodegeneration in hippocampus but not significant for Alzheimer’s disease pathogenesis.

6.
Arq. neuropsiquiatr ; 81(5): 492-501, May 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447401

ABSTRACT

Abstract Background Cognitive event-related potentials (ERPs) allow for lateralization of the epileptogenic zone (EZ) to estimate the reserve of memory in the contralateral non-epileptogenic hemisphere, and to investigate the prognosis of temporal lobe seizure control in unilateral temporal lobe epilepsy (TLE). Objective To define the accuracy of cognitive evoked anterior mesial temporal lobe (AMTL-N400) and P600 potentials in detecting the epileptogenic zone in temporal lobe epilepsy (TLE), and second, to evaluate the possibility of using them as markers of cognitive outcome. Methods The systematic review using Medline/PubMed, Embase, and Lilacs database was conducted in September 2021. Only articles published in English from 1985 to June 2021 were included. We searched for studies with: (1) depth intracranial electroencephalography (iEEG) recordings analysis of rhinal and hippocampal activity (2) correlations between ERP results obtained in the mesial temporal regions (AMTL-N400 and P600) and the epileptogenic zone. Results Six out of the seven studies included in this review defined the laterality of the epileptogenic zone (EZ) during presurgical investigation using ERPs. One study showed that the contralateral AMTL-N400 predicts seizure control. Another study found correlation between the amplitudes of the right AMTL-N400 and postoperative memory performance. Conclusions There is evidence that the reduced amplitude of the AMTL-N400 has high accuracy in identifying the epileptogenic zone, as it does in estimating the extent of seizure control and memory impairment in postoperative patients.


Resumo Antecedentes Potenciais relacionados a eventos (PREs) cognitivos permitem a lateralização da zona epileptogênica (ZE), estimar a reserva de memória no hemisfério contralateral não-epileptogênico, e estimar o prognóstico pós-operatório em pacientes com epilepsia do lobo temporal (ELT) unilateral quanto ao controle de crises. Objetivo Definir a acurácia dos potenciais evocados cognitivos do lobo temporal mesial anterior (LTMA-N400) e P600 na detecção da zona epileptogênica na epilepsia do lobo temporal (ELT), além de avaliar a possibilidade de usá-los como marcadores de desfecho cognitivo. Métodos A revisão sistemática foi realizada em setembro de 2021 usando as bases de dados Medline/PubMed, Embase e Lilacs. Apenas artigos publicados em inglês no período entre 1985 e junho de 2021 foram incluídos. Buscamos estudos com: (1) análises dos registros de electroencefalografia intracraniana (EEGi) da atividade rinal e hipocampal (2) correlações entre os resultados de PREs obtidos nas regiões temporais mesiais (AMTL-N400 e P600) e a zona epileptogênica. Resultados Seis dos sete estudos incluídos nesta revisão definiram a lateralidade da zona epileptogênica (ZE) durante a investigação pré-cirúrgica usando PREs. Um estudo mostrou que o AMTL-N400 contralateral prediz o controle das crises. Outro estudo encontrou correlação entre as amplitudes do AMTL-N400 direito e o desempenho da memória pós-operatória. Conclusões Há evidências de que a amplitude reduzida do AMTL-N400 tem alta precisão na identificação da zona epileptogênica, assim como na estimativa do prognóstico quanto ao controle de crises a longo prazo e prejuízo da memória em pacientes submetidos à cirurgia ressectiva.

7.
International Journal of Biomedical Engineering ; (6): 281-287, 2023.
Article in Chinese | WPRIM | ID: wpr-989352

ABSTRACT

Objective:To investigate the synchronized feature patterns of local field potentials in the hippocampus (HPC) and prefrontal cortex (PFC) during working memory based on time-varying spectral coherence so as to support the study of information processing mechanisms in working memory.Methods:The local field potentials (LFPs) signals of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) were collected from six SD rats during the performance of a spatial working memory task in the Y-maze, and the time-frequency distributions of vHPC and mPFC LFPs were calculated by applying the short-time Fourier transform (STFT) to determine the characteristic frequency bands of the working memory and then to investigate the synchronized patterns of vHPC and mPFC LFPs based on the coherent of the time-varying frequency spectrum. Finally, support vector machines were applied to explore the feasibility of applying spectral coherence values to predict working memory.Results:When rats performed working memory tasks correctly, the energy of the theta band (4 - 12 Hz) of the HPC and PFC increased (all P < 0.01), and the spectral coherence value of the theta band of the HPC-PFC increased ( P < 0.05). Support vector machine training and prediction using the average peak spectral coherence and the difference between the peak and the onset when correctly and incorrectly executing the working memory as features resulted in 89% accuracy, 90% precision, 88% recall, and 88% F1 scores, all of which were statistically significant differences compared to the results of the randomly disrupted labeled data rearranging (all P < 0.05). Conclusions:Synchronized synergy in the HPC-PFC theta band is one of the potential mechanisms for correctly performing information processing in working memory.

8.
Journal of Traditional Chinese Medicine ; (12): 2010-2018, 2023.
Article in Chinese | WPRIM | ID: wpr-988807

ABSTRACT

ObjectiveTo explore the effect and possible mechanism of Shenqi Pills (肾气丸) on cognitive impairment and hippocampal glucose energy metabolism in type 2 diabetes mellitus (T2DM). MethodsSixty C57BL/6 mice were randomly divided into control group, model group, rosiglitazone group and Shenqi Pills low-, medium- and high-dose groups, with 10 mice in each group. T2DM model was induced by a high-fat diet combined with intraperitoneal injection of streptozotocin in all the groups except for the control group. After successful modeling, the high-, medium-, and low-dose Shenqi Pills groups were given 2.08, 1.04, and 0.52 g/(kg·d) of Shenqi Pills granules by gavage respectively, while the rosiglitazone group was given 3 mg/(kg·d) of rosiglitazone tablets by gavage, and the control group and model group were gavaged with 10 ml/(kg·d) of distilled water, all for 8 consecutive weeks. The body weight and fasting blood glucose (FBG) level were recorded every two weeks. The Morris water maze test was performed on the 8th week of medication. After 8-week medication, oral glucose tolerance test (OGTT) and fasting insulin level were measured, hippocampal glucose energy metabolism-related products were quantitatively detected by liquid chromatography tandem mass spectrometry, and KEGG annotation analysis was performed. ResultsCompared to those measured at the same timepoints in the control group, the body mass on week 6 and 8, as well as the FBG level on week 2, 4, 6 and 8 in the model group increased; the blood glucose level at 0, 30, 60 and 120 minutes of the OGTT test increased, while fasting insulin level after 8-week medication decreased. The escape latency of the model group was significantly prolonged on the 3rd and 4th days, and the escape latency time increased, while the total swimming distance, platform quadrant residence time and the number of platform crossings decreased (P<0.05 or P<0.01). Compared to those measured at the same timepoints in the model group, the body mass on week 6 in the low-dose Shenqi Pills group, on week 6 and 8 in the medium- and high-dose groups, and on week 8 in the rosiglitazone group were significantly reduced; the FBG levels in all the Shenqi Pills groups and rosiglitazone group on week 6 and 8 decreased, while fasting insulin levels increased. In the OGTT test, blood glucose in the medium-dose group of Shenqi Pills at all timepoints decreased; in the Morris water maze test, the escape latency period of the medium- and high-dose Shenqi Pills groups was shortened on the 3rd and 4th days, while the escape latency time was reduced, and the total swimming distance, platform quadrant residence time, and number of platform crossings increased in the medium-dose Shenqi Pills group (P<0.05 or P<0.01).The medium-dose Shenqi Pills showed best effect, therefore it was selected for the targeted quantitative detection of metabolites. The medium-dose Shenqi Pills group could regulate the disorder of glucose metabolism in the hippocampus of T2DM mice, and 13 differential metabolites were found,up-regulating α-ketoglutarate and 3-phosphoglyceric acid, and down-regulating fumaric acid, glutamatic acid, lactatic acid, inosine, malic acid, adenine, fructose 1,6-diphosphate and others. KEGG annotation of differential metabolites suggested that Shenqi Pills was closely related to the regulation of glucose metabolism disorder and insulin resistance in the hippocampus region of T2DM model mice, as well as neurodegenerative diseases and ABC transport, hypoxia-inducible factor 1 (HIF), forkhead transcription factor (FoXO) and cyclic adenosine monophosphate (cAMP) signaling pathways. ConclusionShenqi Pills can improve learning and memory abilities and cognitive impairment in T2DM mice, and may act its role by regulating glucose energy metabolism in the hippocampus of T2DM.

9.
Journal of Pharmaceutical Practice ; (6): 540-543, 2023.
Article in Chinese | WPRIM | ID: wpr-988636

ABSTRACT

Objective To study the chemical constituents of Hippocampus trimaculatus Leach. Methods After extracted with ethanol, Hippocampus trimaculatus Leach was isolated and purified by silica gel column chromatography, Sephadex LH-20 gel column chromatography, and reversed-phase C18 column chromatography. The structures of compounds were identified by physical and chemical properties, spectral data and literature comparison. Results Eight compounds were isolated from Hippocampus trimaculatus Leach and identified as L-phenylalanine (1), alanine (2), inosine (3), cholesterol (4), N-acetyltyramine (5), uracil (6), D-mannitol (7), tetrodoine (8), respectively. Conclusion Compounds 5, 7, 8 are isolated from Hippocampus trimaculatus Leach for the first time.

10.
China Journal of Chinese Materia Medica ; (24): 2512-2521, 2023.
Article in Chinese | WPRIM | ID: wpr-981327

ABSTRACT

This study aimed to demonstrate the effect of Banxia Baizhu Tianma Decoction(BBTD) on realizing withdrawal of anti-epileptic drugs and explore the relationship between BBTD and the amino acid metabolism by transcriptomic analysis in the rat model of epilepsy induced by lithium chloride-pilocarpine. The rats with epilepsy were divided into a control group(Ctrl), an epilepsy group(Ep), a BBTD & antiepileptic drug integrative group(BADIG), and an antiepileptic drug withdrawal group(ADWG). The Ctrl and Ep were given ultrapure water by gavage for 12 weeks. The BADIG was given BBTD extract and carbamazepine solution by gavage for 12 weeks. The ADWG was given carbamazepine solution and BBTD extract by gavage for the former 6 weeks, and then only given BBTD extract for the latter 6 weeks. The therapeutic effect was evaluated by behavioral observation, electroencephalogram(EEG), and hippocampal neuronal morphological changes. High-throughput sequencing was used to obtain amino acid metabolism-related differen-tial genes in the hippocampus, and the mRNA expression in the hippocampus of each group was verified by real-time quantitative polymerase chain reaction(RT-qPCR). The hub genes were screened out through protein-protein interaction(PPI) network, and Gene Ontology(GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed. Two ceRNA networks, namely circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA, were constructed for ADWG vs BADIG. The experimental results showed that compared with those in Ep, rats in ADWG were significantly improved in the behavioral observation, EEG, and hippocampal neuronal impairment. Thirty-four amino acid metabolism-related differential genes were obtained by transcriptomic analysis, and the sequencing results were confirmed by RT-qPCR. Eight hub genes were obtained through PPI network, involving several biological processes, molecular functions, and signal pathways related to amino acid metabolism. Finally, the circRNA-miRNA-mRNA ternary transcription network of 17 circRNA, 5 miRNA, and 2 mRNA, and a lncRNA-miRNA-mRNA ternary network of 10 lncRNA, 5 miRNA, and 2 mRNA were constructed in ADWG vs BADIG. In conclusion, BBTD can effectively achieve the withdrawal of antiepileptic drugs, which may be related to the transcriptomic regulation of amino acid metabolism.


Subject(s)
Rats , Animals , RNA, Circular/genetics , Transcriptome , RNA, Long Noncoding/genetics , Anticonvulsants , MicroRNAs/genetics , RNA, Messenger , Carbamazepine , Amino Acids , Gene Regulatory Networks
11.
Neuroscience Bulletin ; (6): 1009-1026, 2023.
Article in English | WPRIM | ID: wpr-982449

ABSTRACT

Anxiety disorders are currently a major psychiatric and social problem, the mechanisms of which have been only partially elucidated. The hippocampus serves as a major target of stress mediators and is closely related to anxiety modulation. Yet so far, its complex anatomy has been a challenge for research on the mechanisms of anxiety regulation. Recent advances in imaging, virus tracking, and optogenetics/chemogenetics have permitted elucidation of the activity, connectivity, and function of specific cell types within the hippocampus and its connected brain regions, providing mechanistic insights into the elaborate organization of the hippocampal circuitry underlying anxiety. Studies of hippocampal neurotransmitter systems, including glutamatergic, GABAergic, cholinergic, dopaminergic, and serotonergic systems, have contributed to the interpretation of the underlying neural mechanisms of anxiety. Neuropeptides and neuroinflammatory factors are also involved in anxiety modulation. This review comprehensively summarizes the hippocampal mechanisms associated with anxiety modulation, based on molecular, cellular, and circuit properties, to provide tailored targets for future anxiety treatment.


Subject(s)
Humans , Hippocampus/physiology , Anxiety , Anxiety Disorders , Neurotransmitter Agents , Neuropeptides
12.
Neuroscience Bulletin ; (6): 717-730, 2023.
Article in English | WPRIM | ID: wpr-982418

ABSTRACT

Animal survival necessitates adaptive behaviors in volatile environmental contexts. Virtual reality (VR) technology is instrumental to study the neural mechanisms underlying behaviors modulated by environmental context by simulating the real world with maximized control of contextual elements. Yet current VR tools for rodents have limited flexibility and performance (e.g., frame rate) for context-dependent cognitive research. Here, we describe a high-performance VR platform with which to study contextual behaviors immersed in editable virtual contexts. This platform was assembled from modular hardware and custom-written software with flexibility and upgradability. Using this platform, we trained mice to perform context-dependent cognitive tasks with rules ranging from discrimination to delayed-sample-to-match while recording from thousands of hippocampal place cells. By precise manipulations of context elements, we found that the context recognition was intact with partial context elements, but impaired by exchanges of context elements. Collectively, our work establishes a configurable VR platform with which to investigate context-dependent cognition with large-scale neural recording.


Subject(s)
Animals , Mice , Rodentia , Virtual Reality , Cognition , Recognition, Psychology
13.
Biomedical and Environmental Sciences ; (12): 50-59, 2023.
Article in English | WPRIM | ID: wpr-970290

ABSTRACT

OBJECTIVE@#Exposure to high intensity, low frequency noise (HI-LFN) causes vibroacoustic disease (VAD), with memory deficit as a primary non-auditory symptomatic effect of VAD. However, the underlying mechanism of the memory deficit is unknown. This study aimed to characterize potential mechanisms involving morphological changes of neurons and nerve fibers in the hippocampus, after exposure to HI-LFN.@*METHODS@#Adult wild-type and transient receptor potential vanilloid subtype 4 knockout (TRPV4-/-) mice were used for construction of the HI-LFN injury model. The new object recognition task and the Morris water maze test were used to measure the memory of these animals. Hemoxylin and eosin and immunofluorescence staining were used to examine morphological changes of the hippocampus after exposure to HI-LFN.@*RESULTS@#The expression of TRPV4 was significantly upregulated in the hippocampus after HI-LFN exposure. Furthermore, memory deficits correlated with lower densities of neurons and neurofilament-positive nerve fibers in the cornu ammonis 1 (CA1) and dentate gyrus (DG) hippocampal areas in wild-type mice. However, TRPV4-/- mice showed better performance in memory tests and more integrated neurofilament-positive nerve fibers in the CA1 and DG areas after HI-LFN exposure.@*CONCLUSION@#TRPV4 up-regulation induced neurofilament positive nerve fiber injury in the hippocampus, which was a possible mechanism for memory impairment and cognitive decline resulting from HI-LFN exposure. Together, these results identified a promising therapeutic target for treating cognitive dysfunction in VAD patients.


Subject(s)
Animals , Mice , TRPV Cation Channels/metabolism , Intermediate Filaments/metabolism , Hippocampus/metabolism , Neurons/metabolism , Memory Disorders/metabolism
14.
Clinics ; 78: 100312, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1528418

ABSTRACT

Abstract Introduction The CA1 region of the hippocampus has an important role in learning and memory. It has been shown that estrogen deficiency may reduce the synaptic density in the region and that hormone replacement therapy may attenuate the reduction. Objectives This study aimed to evaluate the effects of estrogen and raloxifene on the synaptic density profile in the CA1 region of the hippocampus in ovariectomized rats. Methods Sixty ovariectomized three-month-old virgin rats were randomized into six groups (n = 10). Treatments started either three days (early treatment) or sixty days (late treatment) after ovariectomy. The groups received propylene glycol vehicle (0.5 mL/animal/day), equine conjugated estrogens (50 μg/animal/day), or raloxifene (3 mg/kg/day) either early or late after ovariectomy. The drugs were administered orally by gavage for 30 days. At the end of the treatments, the animals were anesthetized and transcardially perfused with ether and saline solution. The brains were removed and prepared for analysis under transmission electron microscopy and later fixed. Results Results showed a significant increase in the synaptic density profile of the hippocampal CA1 region in both the early estrogen (0.534 ± 0.026 µ/m2) and the early raloxifene (0.437 ± 0.012 µ/m2) treatment groups compared to the early or late vehicle-treated control groups (0.338 ± 0.038 µ/m2 and 0.277 ± 0.015 µ/m2 respectively). Conclusions The present data suggest that the raloxifene effect may be lower than that of estrogen, even early or late treatment, on synaptic density in the hippocampus.

15.
Braz. j. med. biol. res ; 56: e12443, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420763

ABSTRACT

Amyloid fibrils are characteristic of several disorders including Alzheimer's disease (AD), with no cure or preventive therapy. Diminishing amyloid deposits using aromatic compounds is an interesting approach toward AD treatment. The present study examined the anti-fibrillogenic effects of silibinin and trans-chalcone in vitro, in vivo, and in silico on insulin amyloids. In vitro incubation of insulin at 37°C for 24 h induced amyloid formation. Addition of trans-chalcone and silibinin to insulin led to reduced amounts of fibrils as shown by thioflavin S fluorescence and Congo red absorption spectroscopy, with a better effect observed for silibinin. In vivo bilateral injection of fibrils formed by incubation of insulin in the presence or absence of silibinin and trans-chalcone or insulin fibrils plus the compounds in rats' hippocampus was performed to obtain AD characteristics. Passive avoidance (PA) test showed that treatment with both compounds efficiently increased latency compared with the model group. Histological investigation of the hippocampus in the cornu ammonis (CA1) and dentate gyrus (DG) regions of the rat's brain stained with hematoxylin-eosin and thioflavin S showed an inhibitory effect on amyloid aggregation and markedly reduced amyloid plaques. In silico, a docking experiment on native and fibrillar forms of insulin provided an insight onto the possible binding site of the compounds. In conclusion, these small aromatic compounds are suggested to have a protective effect on AD.

16.
Braz. j. med. biol. res ; 56: e12742, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447690

ABSTRACT

Brain glucose hypometabolism and neuroinflammation are early pathogenic manifestations in neurological disorders. Neuroinflammation may also disrupt leptin signaling, an adipokine that centrally regulates appetite and energy balance by acting on the hypothalamus and exerting neuroprotection in the hippocampus. The Goto-Kakizaki (GK) rat is a non-obese type 2 diabetes mellitus (T2DM) animal model used to investigate diabetes-associated molecular mechanisms without obesity jeopardizing effects. Wistar and GK rats received the maintenance adult rodent diet. Also, an additional control group of Wistar rats received a high-fat and high-sugar diet (HFHS) provided by free consumption of condensed milk. All diets and water were provided ad libitum for eight weeks. Brain glucose uptake was evaluated by 2-deoxy-2-[fluorine-18] fluoro-D-glucose under basal (saline administration) or stimulated (CL316,243, a selective β3-AR agonist) conditions. The animals were fasted for 10-12 h, anesthetized, and euthanized. The brain was quickly dissected, and the hippocampal area was sectioned and stored at -80°C in different tubes for protein and RNA analyses on the same animal. GK rats exhibited attenuated brain glucose uptake compared to Wistar animals and the HFHS group under basal conditions. Also, the hippocampus of GK rats displayed upregulated leptin receptor, IL-1β, and IL-6 gene expression and IL-1β and the subunit of the transcription factor NF-κB (p-p65) protein expression. No significant alterations were detected in the hippocampus of HFHS rats. Our data indicated that a genetic predisposition to T2DM has significant brain deteriorating features, including brain glucose hypometabolism, neuroinflammation, and leptin signaling disruption in the hippocampal area.

17.
Acta Pharmaceutica Sinica ; (12): 1812-1821, 2023.
Article in Chinese | WPRIM | ID: wpr-978654

ABSTRACT

Based on the UHPLC-Q-Exactive-MS metabonomics technology, the effect of Hippocampus kuda Bleeker on the life span of Drosophila melanogaster was studied, and the change rule of endogenous metabolites in the aging process of Drosophila melanogaster after the intervention of Hippocampus kuda Bleeker japonicus was explored to clarify the anti-aging mechanism of Hippocampus. The natural aging model of Drosophila melanogaster was used. Different doses of raw Hippocampus and fried Hippocampus were given to observe the effects on the life span, climbing ability, sexual activity, and antioxidant enzyme activity of Drosophila melanogaster. Based on UHPLC-Q-Exactive-MS metabolomics technology, the metabolic profile of the aging Drosophila melanogaster was analyzed using metabonomics technology to explore the mechanism of Hippocampus kuda Bleeker delaying the aging of Drosophila melanogaster. The results showed that raw Hippocampus and crispy Hippocampus (1, 4 mg·mL-1) could significantly prolong the average life span, median life span and maximum life span of male fruit flies, and significantly improve the climbing ability and sexual vitality of fruit flies. Catalase (CAT) and aldehyde content were increased, while malonaldehyde (MDA) content was decreased. Through metabonomics technology, it was identified that the Hippocampus can significantly recall 16 metabolites and participate in the biosynthesis of phenylalanine, tyrosine and tryptophan, starch and sucrose metabolism, tyrosine metabolism, cysteine and methionine metabolism, and histidine metabolism. The anti-aging mechanism is related to amino acid metabolism and sugar metabolism, which provides a substantial scientific basis for the development and utilization of Hippocampus and clarifying its role in senile diseases. The animal experiment of this study was approved by the Ethics Committee of Shanxi University (approval number: SXULL2021028).

18.
Chinese Journal of Radiological Health ; (6): 209-215, 2023.
Article in Chinese | WPRIM | ID: wpr-973180

ABSTRACT

@#The central nervous system is one of the most sensitive targets of microwave radiation. Microwave radiation can affect spatial learning and memory and neural information transmission. The effects of microwave radiation on neurotransmitters in the hippocampus and the underlying mechanisms are still unclear. This paper reviews the effects of microwave radiation on learning/memory and neurotransmitters as well as the mechanisms of action on neurotransmitters. This paper aims to provide a scientific basis for future research in this area.

19.
Journal of Xi'an Jiaotong University(Medical Sciences) ; (6): 746-754, 2023.
Article in Chinese | WPRIM | ID: wpr-1005800

ABSTRACT

【Objective】 To construct an acute toxoplasma encephalitis mouse model by observing the pathological changes in the hippocampus of mice infected with Toxoplasma gondii strain RH. 【Methods】 The quantitative RH Toxoplasma gondii (100, 500, and 1 000 trophozoites) were injected into the hippocampal CA1 region of mice by the stereotaxic surgery; the survival status of mice was observed. Giemsa staining was used to observe the changes of toxoplasma in mouse ascites and brain tissue homogenates. Nissl staining and HE staining were used to observe the pathological changes of hippocampal nerve tissue. The distribution of Toxoplasma gondii in brain tissue was observed by immunohistochemical ABC method. 【Results】 The RH Toxoplasma gondii infected mice showed obvious symptoms such as arched back, bristling hair, abdominal distension, subtle tremor and hemiplegia on the fourth day of infection. The survival of mice in 100 trophozoites group was longer, no trophozoites of Toxoplasma gondii were found in ascites, a few pseudocysts were found in brain tissue homogenates after infected for 96 hours, and more trophozoites were found after death. Nysl staining and HE staining showed more tissue necrosis foci and loss of nerve cells in CA1 area after infected 144 h. The injury aggravated with the prolongation of infection time. Toxoplasma trophozoites were found in ascites and brain homogenates of mice in 500 and 1000 trophozoites groups. Nissl staining revealed neuronal loss and massive necrosis in the hippocampus. HE staining showed necrosis and inflammatory cell infiltration. The brain tissue injury significantly aggravated compared with 100 trophozoites group. The distribution of Toxoplasma gondii in the necrotic foci was confirmed by immunohistochemistry. 【Conclusion】 The survival of 100 trophozoite mice infected with Toxoplasma gondii strain RH was longer, and the pathological changes of brain tissue gradually aggravated. The damage was relatively confined to the brain tissue, and the mice showed typical symptoms of toxoplasma encephalitis. Therefore, the mouse model of acute toxoplasma encephalitis can be constructed by localized infection of 100 toxoplasma trophozoites, which can lay a foundation for future research on the mechanism of toxoplasma injury to cranial nerves.

20.
Malaysian Journal of Medicine and Health Sciences ; : 159-165, 2023.
Article in English | WPRIM | ID: wpr-997887

ABSTRACT

@#Introduction: The toxicity of high concentration monosodium glutamate (MSG) has become a controversial issue because of its inconsistent results in human and animal studies. This present study aims to evaluate the effect of subchronic high-doses oral administration of MSG on spatial memory performance and hippocampal pyramidal cells number. Methods: This study involved twenty-eight male Wistar rats, which were divided into a control group of NaCl 0.9% and three intervention groups of MSG 1.0 mg/g bodyweight (M1), 2.0 mg/g bodyweight (M2), and 4.0 mg/g bodyweight (M3) for 30 days. Statistical analysis used a One-way ANOVA test. Results: The result showed significant differences in spatial memory on the Morris Water Maze (MWM) test, including path length (p = 0.020) and escape latency (p = 0.011) according to general linear model repeated measurement analysis. The mean difference of estimated hippocampal pyramidal cells total number among the groups showed volume (p = 0.001), numerical density (p = 0.590), and cells number (p = 0.004). Furthermore, Post-Hoc analysis in both spatial memory and hippocampal pyramidal cells showed that the increasing MSG dose from 1.0 to 4.0 mg/g bodyweight led to a decrease in the results of spatial memory performance on the MWM test and a decrease in hippocampal cells. Conclusion: The present study has provided novel quantitative data that subchronic administration of high-dose MSG caused deleterious effects on the spatial memory function and the volume and number of hippocampal pyramidal cells.

SELECTION OF CITATIONS
SEARCH DETAIL